If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+10x=280
We move all terms to the left:
15x^2+10x-(280)=0
a = 15; b = 10; c = -280;
Δ = b2-4ac
Δ = 102-4·15·(-280)
Δ = 16900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16900}=130$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-130}{2*15}=\frac{-140}{30} =-4+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+130}{2*15}=\frac{120}{30} =4 $
| 10x+5=21x-6 | | k-7=5(10) | | 15x^2+10x=570 | | m=-10-8 | | 3(5x+6)=2 | | –4b−6=–15−3b+4 | | -2+8v=-7v+11+14v | | 9-2x=2x-3+3x-9 | | 3(−4x−1)−2x+4=43 | | -75=13(3a+10) | | x=85/13 | | -16b-12=-6b-13-9b | | 5.87x+3.11x-2=1-10.12 | | 1/5n-1/3=3/8 | | 2x+(x-4)(x+1)=9 | | -10j-6+9j=-j-6 | | 11b−5b−3b−2b=19 | | .7h–5(3h–8)=–72 | | -10s+20=-10s-7 | | -15+1=-6y+1-9y | | 6(a-1)=-102 | | 4(x=2)-2x=0 | | 9k+4=-32 | | -16-16j=-2-16j+13 | | 2m+5-11=0 | | -17n-4=2-11-17n | | -7x+3=-2x+13 | | -3x(5x-2)=6 | | 21=17x | | 2(4−x)−3(x+3)=−11 | | -50=2(-4x+10)-2x | | 2x÷2=18 |